多光子显微镜助力揭示神经干细胞再生机制

  不分你我       

2020年1月17日消息,日本理化学研究所一个研究小组最新研究发现,哺乳动物的大脑在形成时,神经干细胞可以灵活地再生“形状”。这一机制的发现,揭示了细胞不为人知的行为。


多光子显微镜助力揭示神经干细胞再生机制


动物大脑发育过程中,产生神经细胞(神经元)和胶质细胞的神经干细胞称为“放射状胶质”。放射状胶质是一种细长柱状的细胞,有两个从细胞核上下延伸的突起,具有顶端和基底的细胞极性。多个放射状神经胶质附着在每个顶端,形成像上皮细胞的片状结构。这种片状结构是大脑发育的基本结构。


放射状神经胶质根据细胞周期沿着顶端—基底轴上下移动细胞核,在顶端一侧进行细胞分裂。脑发育时,放射状胶质通过“对称分裂”的自我复制来增加数量(增殖期),然后通过“非对称分裂”形成放射状神经胶质和分化细胞。非对称分裂中,首先会产生各种各样的神经细胞(神经产生期),之后会产生辅佐神经细胞工作的胶质细胞(胶质产生期),形成复杂的大脑。


多光子显微镜助力揭示神经干细胞再生机制


此次,研究小组利用多光子显微镜,清晰地捕捉到了小鼠胎儿脑组织中存在的神经干细胞的形状变化,发现神经干细胞能灵活地再生柱状形态。在早期脑发育(增殖)期间神经干细胞分裂时,即使柱状结构被破坏,这种再生能力也能保持脑组织的细胞排列;在脑发育后期(神经产生阶段),柱状结构被破坏的神经干细胞逐渐积累,在脑组织中出现了其他的神经干细胞层。研究小组还发现,这个新的干细胞层的出现导致了像人那样有很大褶皱的脑形成。


研究成果在线发表于近期的《自然细胞生物学》上。


关于多光子显微镜


多光子显微镜是光学显微镜的重大改进,主要表现为可以观察活细胞、固定细胞和组织的深层结构,并且可以得到清晰锐利的多层Z平面结构,即光学切片,并以此可以构建标本的三维实体结构。多光子显微镜采用激光光源,经过扩充后充满整个物镜后焦平面,然后经过物镜的透镜系统,在标本的焦平面上会聚成非常小的点。


与传统光学显微镜相比,多光子显微镜具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点。所以它问世以来在生物学的研究领域中得到了广泛应用。在对生物样品的观察中,多光子显微镜有其优越性:对活细胞和组织或细胞切片进行连续扫描,可获得精细的细胞骨架、染色体、细胞器和细胞膜系统的三维图像。可以得到比普通荧光显微镜更高对比度、高解析度图象、同时具有高灵敏度、杰出样品保护。


文章来源: 科技日报

相关标签点击标签,查看更多精彩资讯

最新评论(0)条评论
不吐不快,我来说两句

还没有人评论哦,抢沙发吧~